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A mathematical model is presented for nonuniform biaxial stretching of a non- 
linear viscoelastic crystallizing medium under nonisothermal conditions. 

The production of thin thermoplastic films by the blown-film(inflated-tube) extrusion 
process has enjoyed wide applications in recent years for polymer processing. This method 
can be used to obtain thinner biaxially oriented films than is possible in flat (sheet) ex- 
trusion, and they have higher tensile strength, frost resistance, tear strength, and trans- 
parency, making them useful not only for packaging, but also for electrical engineering, 
instrument design, medicine, furniture-making, etc. The tubular bubble that emerges from 
the die is drawn upward by the drawing mechanism, and air is injected into the die, inflat- 
ing the bubble. External blowing is used to cool the hot bubble at a set height. The 
axial force F required on the rollers in order to draw the film upward is regulated, along 
with the pressure p inside the bubble. 

Several serious attempts have been made previously to describe the blown-film extru- 
sion process. The most complete coverage of this effort is found in the work of Han and 
Park [i, 2] on the nonisothermal stretching of an inelastic fluid with power-law rheology 
and an exponential temperature dependence of the viscosity in the entire inflation zone up 
to the solidification line. Below the melting point, however, the same degree of crystal- 
linity corresponds to different temperatures and vice versa under nonisothermal crystalliza- 
tion conditions at different cooling rates. The structural state of the polymer is there- 
fore determined not only by the temperature, but also by the degree of crystallinity. Con- 
sequently, even for approximate solutions to characterize the physical nature of the process 
correctly it is necessary to allow for the dependence of the rheological and thermophysical 
properties of the polymer both on the temperature and on the crystallinity. The density and 
specific heat are knwn not to depend as strongly on the temperature as, e.g., the viscosity. 
However, when the polymer cools down by I00-200~ going through a phase transition in the 
process, the variation of these physical properties can be significant, and the calculations 
must reflect this fact. 

Many researchers have noted [i, 3] that effects associated with a rubber-elastic melt 
must be taken into account in the theoretical analysis of the production of blown films. 
Such effects are even more essential than the possible dependence of the longitudinal visco- 
sity on the shear rate [3]. This consideration is particularly timely for the production 
of oriented thermoplastic films by extrusion below the melting point [5]. However, only 
Petrie [4] has attempted to describe the isothermal blown-film process for a viscoelastic 
medium on the basis of the Maxwell model. 

Fig. i. Schematic view of the 
formation of a blown film. 
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Fig. 2 Fig. 3 
Fig. 2. Distributions of the tube radius r (m) and the film 
thickness h (m) and temperature T (~ along the height z 
(m) in formation from the melt; 61 = 1.5 J/kg K2; 62 = 6.0 
J/kg K2; YI = 0.5 kg/m 2 K; ~2 = 0.8 kg/m s K; m = 3; q02 = 
-8000 Pa'sec2; q0a = 0. 

Fig. 3. Oriented film; distributions of the tube radius r 
and the film thickness h and temperature T along the height z. 

In the present article we investigate the nonisothermal nonuniform biaxial stretching 
of a nonlinearly viscoelastic film in the zone where the tube radius r and the film thick- 
ness vary in the direction of motion of the film z. Since h ~ r, we use the approximation 
of the theory of thin shells. The process of formation of the blown film is shown sche- 
matically in Fig. i. The rectangular coordinates at a certain point P on the surface of the 
film are related to the cylindrical coordinates in order to facilitate the solution. In 
this case x I corresponds to the direction of flow, x= is directed along the normal to the 
film, and the x 3 axis is perpendicular to the plane of the figure. The following assump- 
tions are made in the formulation and solution of the problem: The film thickness is small 
enough that the nonuniformity of the velocity profile in the transverse direction can be 
ignored; the forces of surface tension, inertia, and air friction of the film tube are dis- 
regarded; heat transfer does not take place between the inner surface of the tube and the air 
contained in it; heat conduction in the thin film itself can be neglected (the Biot number 
is of the order of i0 -l to 10-3). 

We assume that the rheological properties of the polymer are described by a differential 
model, according to which the stress tensor is determined by the kinematic tensors of strain 
rates B I and strain accelerations B= [6, 7]: 

--P6--k~B~--b~2B~ B 2 (1) 

The use of higher-order kinematic tensors does not have any practical value, since this 
would require knowledge of more initial conditions than can be established on the basis of 
physical considerations. 

The strain-rate tensor for the given situation is known to have the form [i] 

0 0 

B 1 = 2  
1 dh 

0 
h dt 

1 dr 
0 

r dt 

(2) 
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Then 

- -  0 0 
r dt " h dt 

B] = 4  i 0 ( h d r )  1 dh ~ 0 

I o o 
_ d t  ] 

(3) 

The strain-acceleration tensor of an incompressible medium is determined by means of the Old- 
royd contravariant derivative [6, 7]: 

B(2 U) D B~q) Ov~ B~S ) Ors B]i~), 
Dt ax~ Ox~ 

[ W~ 0 0 ] 
B 2 = [  0 0 W,. 0 , 

0 I1783 
(4) 

where 

" ~ r l l  ~ - - -  2 
1 dh l dr \ ~ 2 dZh 2 dir 

_ _ _ _  - -  ) 
h dt @ r dt h dt z r dl z 

4 (  1 d h ~ (  l_~ dr'~ 
t T T i  t ,  dt ] '  

6 ( d h l 2  2 d2h W3 3 6 / d r h  2 , 2 d2r 
W ' 2 = - -  h-T \ dt / + h dt ~ '  r z [---~ ) -v r dt 2 

Substituting Eqs. (2)-(4) in (I) and determining the value of p from the condition oiz = O, 
we obtain 

au= :2+h(  1 dr 2 d h ) _ 2 ~ h (  1 dir @ 2 dih)_+_ 
r dt ~- h dt 7 d T  ~ dt - -~  
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�9 s 
r dt h dt 
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(5) 

(6) 

where the material functions are assumed to have the form 
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The second invariant of the strain-rate tensor J2 isgiven by the equation 

- - 2 - =  dt ] + - ~ (i0) r dt , h dt h dt 

I n  Eq. (7 )  t h e  l o n g i t u d i n a l  v i s c o s i t y  ql  does  n o t  t e n d  t o  i n f i n i t y  in  t h e  l i m i t  0 ~ 1, s i n c e  
many polymers can be drawn at temperatures far below the equilibrium melting point if the 
film thickness is sufficiently small. 

In order to determine r(t), it is necessary to form a system of equilibrium equations 
for the forces acting on the tube as it is inflated. We use the classical equations of the 
couple-free theory of thin films for this purpose. The condition for equilibrium of the 
shell zone in the direction of its axis has the following form with allowance for the stated 
assumptions [i]: 

Z 

2nr P ~ cos ~ + n a p  ( R z - -  r z) + 2npg S rh sec ~dz = F. ( 11 ) 
z 

It must be noted that the quantity Z is not known beforehand; it must first be specified 
approximately and then refined. The force P3 acting in the perpendicular direction and the 
tensile force PI are equalized by the differential pressure Ap in the tube inflation zone: 

Pl .+.Pa = Ap. (12)  
RI R8 

Equation (12) represents the solution of the equilibrium equation for a shell element (La- 
place equation) [i] and determines the conditions for the existence of a free interface. The 
principal radii of curvature R I and R 2 of the film shell are defined as 

R 1  = - -  [1  " ~  (/.;)'/]3/2 _ seOq~ (13)  

d d ' 

R s = r ] / 1 - l - ( r z )  z =  r 
cos qD 

It is obvious from geometrical considerations that r z' = tan ~. Accordingly 

(14) 

R1 = " SI~C (D ( 15 ) 

The v a l u e  o f  t h e  v e l o c i t y  v 1 can  be e x p r e s s e d  in  t e r m s  o f  t h e  v o l u m e t r i c  f l o w  r a t e  Q and t h e  
p a r a m e t e r s  r and h:  

Q 
vl = 2nr---~" (16)  

The f o r c e s  Pt  and P3 can  be e x p r e s s e d  in  t e r m s  o f  t h e  s t r e s s e s :  P1 = h ~  Pa -- h ~  How- 
e v e r ,  b e f o r e  we make u s e  o f  Eqs .  (5 )  and ( 6 ) ,  we l ower  t h e  o r d e r  o f  t h e i r  d e r i v a t i v e s  by 
i n t r o d u c i n g  t h e  a u x i l i a r y  f u n c t i o n  y = h t '  and making  t h e  t r a n s f o r m a t i o n s  

dr dr dz 
- - - - v z t g ~ = v l s i n %  

dt dz dt 

d ~r (v l s inq )  1 d h )  d~ 
d-~ ---- - -  vl sin cp -r -{- h d - t  -}- v2 c~176 ~z"  

(17) 

( 1 8 )  

Equation (18)  has been derived with allowance for Eqs. 
lation 

~ = ~v~ cos ~. 

(16) and (17) together with the re- 

We thus arrive at the system of four first-order differential equations 

z R 
2r~rtuA, cos rp = F - -  nap  ( R z - -  r 2) - -  2~pg f rh sec rpdz, 

z 

- -  her n cos qo. cpz --[- h~ cos q~ = Ap, 
/- 

(19) 

(20) 
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where 

h~=  y 
V 1 cos (p 

r~ = tg~p, 

(21) 

(22)  

T a l l  = '1']1 f + If_ ' h f  f Fq~ r ctgZcp - -  
h 

�9 y 2 y2 
--21"1201COSq0--~-- + ( 2 q a - - ~ h ) ( f  +--~--)--(2r la--3qg.)  h--7-, 

( ) ) -~- %a = ~1 r --- y - -  ~loF ( r + y - -  F%r ctg2~p -- 
h \ h 

__T]=VlCOSq ) -TYZ + ( 2 r h _  3~h) (Fz --~-- , F - - Y 2 )  v~sinq~r 

To calculate DI, qi, and q3 according to Eqs. (7)-(9), it is required to know the varia- 
tion of the film temperature. The system (19)-(22) must be augmented with the heat-balance 
equation 

pcv~h cos ~T~ = a (Tc - -  T) q- ~ e (T~ - -  T a) + p~ d-- -O-O , ( 23 ) 
dt 

where the dependence of the density and specific heat of the polymer on the temperature and 
degree of crystallinity can be regarded as linear: 

P (T, O) = [Po + ?1 (T - -  To)] (1 - -  @) + [Pc q- Y~ (T - -  Tc)] @, (24)  

c (T, @)= [Co + ~1 (T - -  To)] (1 --- O) + [Ce + ~2 ( T -  Te)] O. (25)  

The degree of crystallinity 0 with any temperature-time history of the state T(t) is calcu- 
lated on the assumption of "isokinetic conditions," where the time dependences of the growth 
rate of the crystal formations and the rate of formation of active centers are similar func- 
tions [3]: 

t ! 

In (I - -  O) = - -  (.l K u  [T (t)] dr) m. (26)  
t* 

A similar relation has been derived previously [8], but from different basic principles. 
Equation (26) is one of the simplest equations for nonisothermal crystallization, yet it is 
the most practical relation, since the literature is devoid of exhaustive experimental ma- 
terial requiring other more complex models [9]. The function K(T), which represents the 
reciprocal half-period of crystallization and characterizes the rate of crystallization, is 
determined by means of the equation for the nucleation rate in combination with the William- 
Lendel-Ferry equation for the activation energy [3]: 

K(T)= Koexp I AT CTm ]. (27)  
T - -  Tz + B T (Tin - -  T) 

We have thus obtained the system (19)-(23) of five first-order differential equations in the 
five unknown functions h(z), r(z), r y(z), and T(z), which can be solved numerically 
with allowance for Eqs. (7)-(9) and (24)-(27) to determine the fundamental parameters of the 
blown-film extrusion process. In the present study we use the Merson modification of the 
Runge-Kutta method. The shape of the tube (bubble) is shown in Fig. 2, along with the dis- 
tributions of the film thickness and temperature along the height of the tube during the for- 
mation of an "unoriented" film from the melt. The model medium has the constants E = 60 kJ/ 
mole, C O = 2500 J/kg K, T m = 165~ c c = 1800 J/kg K, X = 5.67"i0 -s W/mi"K ", 00 = 1104 kg/m 3, 
Pc = 1210 kg/m 3, q01 = 2700 Pa-sec 2, b 2 = b s = 0, n = i, Tg = 20~ 

The parameters of the process are Ap = 1.2 Pa, T c = 20~ T O = 230~ r 0 = 0.25 m, Q = 
5.0"10-s m3/sec, h 0 = 1.2"10 -a m, ~ = 40 W/mi'K, F = 2.2 N. 
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Figure 3 shows the shape of the tube and the height distributions of the film thickness 
and temperature for the formation of an oriented film, where the tube is inflated during 
heating, but below the melting point of the polymer. The calculations are carried out on 
the assumption that the degree of crystallinity is constant and equal to the maximum attain- 
able value. The physical properties of the polymer are the same as in Fig. i, and the pro- 
cess parameters are T c = 125~ T o = 90~ Ap = 3000 Pa, E = ii0 kJ/mole, r0 = 0.3 m, Q = 
5.2"I0 -s m3/sec, h 0 = 2.4-10 -4 m, a = 20 W/m2.K, F = ii,000 N. 

We note in conclusion that the equations for the stresses o11 and o3a (5) and (6) are 
simplified considerably in the important practical case of the formation of isotropic films 
in the uniform biaxial stretching regime, when 

1 dh  1 d r  " 

2h dt r d t '  
viz. : 

1 ~h dh 
(~11 = - - ' - -  

3 h dt h dt 2 
/ 

1 I h dh ~12 d~h 

3 h dt h tit 2 

~h d2h 

dt ] 
! dh 2 

NOTATION 

r, r0, variable and initial radii of tubular bubble; h, h0, variable and initial film 
thicknesses; T, To, instantaneous film temperature and film temperature at exit from ex- 
truder; F, axial force on drawing rollers; Ap, excess pressure inside tube; q01, longitudi- 
nal viscosity at temperature Tn; q02, q03, elastic constants at temperature To; J2, second 
invariant of strain-rate tensor; E, activation energy of longitudinal flow; R e, gas constant; 
0, degree of crystallinity; P0, co, density and specific heat of melt at temperature To; 
Pc, Cc, density and specific heat of polymer at ambient temperature Tc; =, heat-transfer co- 
efficient; k, Stefan-Boltzmann constant; e, emissivity; Q, volumetric flow rate of polymer 
from die; vl, velocity in x I direction; oii , 022 , os3, normal stresses in xl, x2, x 3 direc- 
tions, respectively; ~, latent heat of crystallization. 
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